Modulatory Serotonin Receptors on the Soma of Command Neurons in Edible Snail

A. S. Pivovarov and V. L. Nistratova

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 136, No. 8, pp. 132-134, August, 2003 Original article submitted February 7, 2003

Local application of serotonin (5-hydroxytryptamine, 5-HT) to the soma of command neurons LPa2, LPa3, PPa3, and PPa2 of edible snail *Helix lucorum* reversibly decreased acetylcholine-induced inward current in these neurons. NAN-190 and methiothepin, antagonists of 5-HT₁ serotonin receptors, prevented this modulatory effect of 5-HT. By contrast, LY-53.857, ICS-205.930, and SDZ-205.557, antagonists of 5-HT₂, 5-HT₃, and 5-HT₄ serotonin receptors, respectively, produced no effect on the modulatory effect of serotonin. The data confirm the presence of modulator 5-HT₁ serotonin receptor on the soma of command neurons of *Helix pomatia*.

Key Words: serotonin, acetylcholine, serotonin antagonists, neurons, Helix lucorum

Monoamine serotonin (5-hydroxytryptamine, 5-HT) was found in the nervous system of edible snail [4,12]. In this organism 5-HT probably plays a role of a humoral factor, which exerts a neuromodulator effect on command neurons responsible for defensive behavior. The somas of these neurons are surrounded by a network of serotonin-containing fibers that have no specialized synaptic membranes [13]. Command neurons are sensitive to serotonin, which increases the amplitude of orthodromic excitatory postsynaptic potential (EPSP) [1,2,8,9]. The presence of 5-HT in the extracellular medium is a prerequisite for the development of a long-term potentiation of EPSP in the command neuron caused by its intracellular tetanization [6]. 5-HT modulates the extrasynaptic cholinoreceptors of the command neurons: it potentiates or attenuates acetylcholine-induced depolarization and inward current [3].

At present, seven types of serotonin receptors are described [10]. Our aim was to determine the type of serotonin receptors mediating the modulator effect of 5-HT on previously identified extrasynaptic cholinoreceptors of the command neurons of edible snail, which control its defensive behavior [7].

Department of Higher Nervous Activity, M. V. Lomonosov Moscow State University

MATERIALS AND METHODS

Experiments were carried out on command neurons LPa2, LPa3, PPa2, and PPa3 [5], which control defensive behavior of *Helix lucorum* (Crimean population of edible snail). The isolated ganglia with these neurons were examined under the stop-flow conditions with physiological saline containing (in mM): 100 NaCl, 4 KCl, 10 CaCl₂, 4 MgCl₂, 10 Tris-HCl (pH 7.5-7.7).

The transmembrane ionic currents in command neurons were measured by two-electrode voltage clamp technique with virtual ground. The currents were recorded in a computer using CONAN 3.0 software. Resting potential and membrane resistance were -63.20 \pm 1.05 mV and 3.23 \pm 0.26 M Ω , respectively.

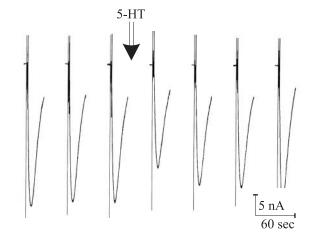
Local acetylcholine (Ach) was applied ionophoretically on the dorsal surface of neuron soma from a glass micropipette filled with 1 M acetylcholine chloride (Sigma) in distilled water.

5-HT hydrochloride (Sigma) was locally applied to a neuron under a pressure developed by a KM-2 piston injector. 5-HT (5 mM) was dissolved in physiological saline immediately before use. Before application, the solution was visually controlled in air, where it formed a droplet similar in size to the target cell with a diameter of 0.2-0.3 mm. The volume of

injectate varied from 4 to 14 nl. The internal diameter of the injection micropipette tip was $4.25\text{-}10.60\,\mu$. The duration of each application was 5 or 10 sec; volume rate varied from 0.4 to 2.8 nl/sec.

Five antagonists of serotonin receptors were used: NAN-190 hydrochloride, Sigma (antagonist of 5-HT_{1A} receptors); methiothepin mesylate, Sigma (antagonist of 5-HT_{1E/1F} receptors); LY-53.857 maleate, RBI (antagonist of 5-HT₂ receptors); ISC-205.930, ICN (antagonist of 5-HT₃ receptors); SDZ-205.557 hydrochloride, RBI (antagonist of 5-HT₄-receptors). The antagonists were dissolved in physiological saline and applied with a microsyringe directly into the perfusion chamber with isolated ganglia.

The data were processed statistically using Student, Wilcoxon, Van-der-Varden, and Mann—Whitney tests and presented as means and SEM. Calculations were performed with STADIA 6.2 and Statistica 5.0 software.


RESULTS

In the control, application of physiological saline to neuron soma (n=11) produced no significant changes in the amplitude of Ach-triggered currents in LPa2, LPa3, PPa3, and PPa2 cells: the postapplication current was $101.03\pm5.83\%$ of the control value. By contrast, 5-HT reversibly decreased the amplitude of Achtriggered inward current (Ach-current) according to Wilcoxon, Van-der-Varden, and Mann—Whitney tests (n=44, p<0.00001). The maximum effect was observed 20-300 sec after the end of application (Fig. 1). The amplitude of Ach-current was $66.57\pm2.53\%$ of the control value.

These findings attest to the existence of extrasynaptic 5-HT modulator receptors on the soma of command neurons LPa2, LPa3, PPa3, and PPa2 of *Helix lucorum*.

Six experimental series were carried out to assess the sensitivity of extrasynaptic modulatory receptors to antagonists of four basic types of 5-HT receptors (5-HT₁, 5-HT₂, 5-HT₃, and 5-HT₄). The first series included two successive identical applications of 5-HT with an interval of 50-80 min. (The second application controlled the change of 5-HT action during repeated use). Series II-VI consisted of three successive applications of 5-HT: before action of 5-HT antagonist, during its application and after washout. The duration of antagonist exposure before serotonin application was 25-45 min. In all series, the preparation was rinsed for 10-15 min with physiological saline 15 min after 5-HT application.

In control series (n=9) the second application of 5-HT did not differ from the first one in the efficiency of Ach-current suppression, the difference between

Fig. 1. Serotonin-induced inhibition of acetylcholine-triggered inward currents (Ach-current) in LPa3 command neuron. Ionic currents induced by Ach applied repetitively with a 5 min interval are shown. The arrow shows application of serotonin (duration 5 sec). Holding potential -75 mV.

amplitude decrements being only -0.56±2.35%. The changes in the efficiency of serotonin-induced inhibition of Ach-currents produced by 5-HT antagonists were compared with the control effect of the second application of serotonin in control series.

NAN-190 (30-50 μ M), an antagonist of 5-HT_{1A} receptors, prevented the effect of serotonin (n=7). The difference between the maximum effects of serotonin before and during application of the blocker was -10.60 \pm 4.34% (p=0.039, 0.05, 0.025, and 0.021 according to Student, Mann—Whitney, Wilcoxon, and Vander-Varden tests, respectively). The effect of NAN was reversible, because the difference between the maximum effects of serotonin before application of the blocker and after washout was -0.48 \pm 3.36% (p=0.044 and p=0.037 according to Wilcoxon and Van-der-Varden tests, correspondingly).

Methiothepin (30-50 μ M), an antagonist of 5-HT_{IE/IF} receptors, also prevented the effect of serotonin (n=7). The mean difference between the maximum effects of serotonin before and during application of the blocker was -20.07 \pm 5.72% (p=0.005, 0.023, 0.011, and 0.01 accordingly to Student, Mann—Whitney, Wilcoxon, and Van-der-Varden tests, respectively). The effect of methiothepin was irreversible, because the mean difference between the maximum effects of serotonin before application of the blocker and after washout was -8.67 \pm 8.09% (p=0.223, 0.112, and 0.105 according to Mann—Whitney, Wilcoxon and Van-der-Varden tests, correspondingly).

LY-53.857 (50 μ M), an antagonist of 5-HT₂ receptors, did not prevent the effect of serotonin (n=7). The mean difference between the maximum effects of serotonin before and during application of the blocker was $10.39\pm4.18\%$ (p=0.058, 0.101, 0.05, and 0.067

according to Student, Mann—Whitney, Wilcoxon, and Van-der-Varden tests, respectively).

ICS-205.930 (10-50 μ M), an antagonist of 5-HT₃ receptors, did not modify the effect of serotonin (n=7). The mean difference between the maximum effects of serotonin before and during application of the blocker was -5.93 \pm 4.28% (p=0.205, 0.224, 0.112, and 0.098 according to Student, Mann—Whitney, Wilcoxon, and Van-der-Varden tests, respectively).

SDZ-205.557 (50 μ M), an antagonist of 5-HT₄ receptors, did not modify the effect of serotonin (n=7). The mean difference between the maximum effects of serotonin before and during application of the blocker was -4.27±2.75% (p=0.201, 0.266, 0.133, and 0.111 according to Student, Mann—Whitney, Wilcoxon, and Van-der-Varden tests, respectively).

These data showed that the modulatory serotonin receptors on the soma of command neurons LPa2, LPa3, PPa3, and PPa2 belong to type 5-HT₁ receptors. 5-HT modulates potential-dependent calcium current in non-identified neurons of *Helix lucorum* via the same receptor [11].

The study was supported by the Russian Foundation for Basic Research (grant No. 02-04-48014) and MAC Foundation (grant No. 02-04-06119).

REFERENCES

- O. V. Borisova, Byull. Eksp. Biol. Med., 106, No. 12, 651-653 (1988).
- N. I. Bravarenko, Zh. Vyssh. Nervn. Deyat., 44, No. 2, 301-306 (1994).
- 3. V. A. Dyatlov, Neirofiziologiya, 20, No. 1, 57-64 (1988).
- 4. V. N. Ierusalimskii, I. S. Zakharov, and P. M. Balaban, *Zh. Vyssh. Nervn. Deyat.*, **47**, No. 3, 563-576 (1997).
- V. N. Ierusalimskii, I. S. Zakharov, T. A. Palikhova, and P. M. Balaban, *Ibid.*, 42, No. 6, 1075-1089 (1992).
- A. Yu. Malyshev, N. I. Bravarenko, A. S. Pivovarov, and P. M. Balaban, *Ibid.*, 47, No. 3, 553-562 (1997).
- 7. A. S. Pivovarov and E. I. Drozdova, *Neirofiziologiya*, **24**, No. 1, 77-86 (1992).
- 8. M. V. Chistyakova, Zh. Vyssh. Nervn. Deyat., 37, No. 1, 122-127 (1987).
- A. V. Shevelkin, V. P. Nikitin, S. A. Kozyrev, et al., Ibid., 47, No. 3, 532-542 (1997).
- N. M. Barnes and T. Sharp, *Neuropharmacology*, 38, No. 8, 1083-1152 (1999).
- P. G. Kostyk, E. A. Lukyanetz, and P. A. Doroshenko, *Pflügers Arch.*, 420, No. 1, 9-15 (1992).
- 12. B. Michaelidis, N. S. Loumbourdis and E. Kapaki, *J. Exp. Biol.*, **205**, Pt. 8, 1135-1143 (2002).
- 13. A. Vehovszky, L. Hernadi, K. Elekes, and P. Balaban, *Acta Biol. Hung.*, **44**, No. 1, 97-101 (1993).